Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.

Identifieur interne : 000810 ( Main/Exploration ); précédent : 000809; suivant : 000811

Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.

Auteurs : Olena Dobrovolska [Norvège] ; Elena Shumilina ; Vadim N. Gladyshev ; Alexander Dikiy

Source :

RBID : pubmed:23300818

Descripteurs français

English descriptors

Abstract

Thioredoxin glutathione reductase (TGR) is a member of the mammalian thioredoxin reductase family that has a monothiol glutaredoxin (Grx) domain attached to the thioredoxin reductase module. Here, we report a structure of the Grx domain of mouse TGR, determined through high resolution NMR spectroscopy to the final backbone RMSD value of 0.48 ± 0.10 Å. The structure represents a sandwich-like molecule composed of a four stranded β-sheet flanked by five α-helixes, with the CxxS active motif located on the catalytic loop. We structurally characterized the glutathione-binding site in the protein and describe sequence and structural relationships of the domain with glutaredoxins. The structure illuminates a key functional center that evolved in mammalian TGRs to act in thiol-disulfide reactions. Our study allows us to hypothesize that Cys105 might be functionally relevant for TGR catalysis. In addition, the data suggest that the N-terminus of Grx acts as a possible regulatory signal also protecting the protein active site from unwanted interactions in cellular cytosol.

DOI: 10.1371/journal.pone.0052914
PubMed: 23300818
PubMed Central: PMC3530482


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.</title>
<author>
<name sortKey="Dobrovolska, Olena" sort="Dobrovolska, Olena" uniqKey="Dobrovolska O" first="Olena" last="Dobrovolska">Olena Dobrovolska</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Biotechnology, Norwegian University of Science and Technology, Trondheim</wicri:regionArea>
<placeName>
<settlement type="city">Trondheim</settlement>
<region type="région" nuts="2">Trøndelag</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shumilina, Elena" sort="Shumilina, Elena" uniqKey="Shumilina E" first="Elena" last="Shumilina">Elena Shumilina</name>
</author>
<author>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
</author>
<author>
<name sortKey="Dikiy, Alexander" sort="Dikiy, Alexander" uniqKey="Dikiy A" first="Alexander" last="Dikiy">Alexander Dikiy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23300818</idno>
<idno type="pmid">23300818</idno>
<idno type="doi">10.1371/journal.pone.0052914</idno>
<idno type="pmc">PMC3530482</idno>
<idno type="wicri:Area/Main/Corpus">000770</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000770</idno>
<idno type="wicri:Area/Main/Curation">000770</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000770</idno>
<idno type="wicri:Area/Main/Exploration">000770</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.</title>
<author>
<name sortKey="Dobrovolska, Olena" sort="Dobrovolska, Olena" uniqKey="Dobrovolska O" first="Olena" last="Dobrovolska">Olena Dobrovolska</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Biotechnology, Norwegian University of Science and Technology, Trondheim</wicri:regionArea>
<placeName>
<settlement type="city">Trondheim</settlement>
<region type="région" nuts="2">Trøndelag</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shumilina, Elena" sort="Shumilina, Elena" uniqKey="Shumilina E" first="Elena" last="Shumilina">Elena Shumilina</name>
</author>
<author>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
</author>
<author>
<name sortKey="Dikiy, Alexander" sort="Dikiy, Alexander" uniqKey="Dikiy A" first="Alexander" last="Dikiy">Alexander Dikiy</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>NADH, NADPH Oxidoreductases (chemistry)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Complexes multienzymatiques (composition chimique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>NADH, NADPH oxidoreductases (composition chimique)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Modèles moléculaires</term>
<term>Souris</term>
<term>Spectroscopie par résonance magnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin glutathione reductase (TGR) is a member of the mammalian thioredoxin reductase family that has a monothiol glutaredoxin (Grx) domain attached to the thioredoxin reductase module. Here, we report a structure of the Grx domain of mouse TGR, determined through high resolution NMR spectroscopy to the final backbone RMSD value of 0.48 ± 0.10 Å. The structure represents a sandwich-like molecule composed of a four stranded β-sheet flanked by five α-helixes, with the CxxS active motif located on the catalytic loop. We structurally characterized the glutathione-binding site in the protein and describe sequence and structural relationships of the domain with glutaredoxins. The structure illuminates a key functional center that evolved in mammalian TGRs to act in thiol-disulfide reactions. Our study allows us to hypothesize that Cys105 might be functionally relevant for TGR catalysis. In addition, the data suggest that the N-terminus of Grx acts as a possible regulatory signal also protecting the protein active site from unwanted interactions in cellular cytosol.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23300818</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>e52914</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0052914</ELocationID>
<Abstract>
<AbstractText>Thioredoxin glutathione reductase (TGR) is a member of the mammalian thioredoxin reductase family that has a monothiol glutaredoxin (Grx) domain attached to the thioredoxin reductase module. Here, we report a structure of the Grx domain of mouse TGR, determined through high resolution NMR spectroscopy to the final backbone RMSD value of 0.48 ± 0.10 Å. The structure represents a sandwich-like molecule composed of a four stranded β-sheet flanked by five α-helixes, with the CxxS active motif located on the catalytic loop. We structurally characterized the glutathione-binding site in the protein and describe sequence and structural relationships of the domain with glutaredoxins. The structure illuminates a key functional center that evolved in mammalian TGRs to act in thiol-disulfide reactions. Our study allows us to hypothesize that Cys105 might be functionally relevant for TGR catalysis. In addition, the data suggest that the N-terminus of Grx acts as a possible regulatory signal also protecting the protein active site from unwanted interactions in cellular cytosol.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dobrovolska</LastName>
<ForeName>Olena</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shumilina</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gladyshev</LastName>
<ForeName>Vadim N</ForeName>
<Initials>VN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dikiy</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R37 GM065204</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM065204</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.4.-</RegistryNumber>
<NameOfSubstance UI="C466433">thioredoxin glutathione reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23300818</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0052914</ArticleId>
<ArticleId IdType="pii">PONE-D-12-31959</ArticleId>
<ArticleId IdType="pmc">PMC3530482</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1999 Mar;13(3):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1997;66:863-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):24522-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Nov 1;241(3):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Oct 6;1447(1):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W590-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Reprod Dev. 1997 May;47(1):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9110318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Dec 21;21(26):6628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7159551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Feb 5;217(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1847217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 2;276(5):3106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2012 Apr;6(1):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Jul 5;50(26):5870-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21630672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 22;285(43):33315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):6736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1006-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8577704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Aug;264(1):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jun;5(6):1335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3015599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Dec;3(12):e375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2004 Jan;28(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jan 8;442(1):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9923614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Aug 15;72(3):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18300227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Apr;261(2):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10215850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1808(8):1957-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Naturae. 2011 Jul;3(3):77-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 Apr;41(4):900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 2;373(1):5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
<region>
<li>Trøndelag</li>
</region>
<settlement>
<li>Trondheim</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Dikiy, Alexander" sort="Dikiy, Alexander" uniqKey="Dikiy A" first="Alexander" last="Dikiy">Alexander Dikiy</name>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
<name sortKey="Shumilina, Elena" sort="Shumilina, Elena" uniqKey="Shumilina E" first="Elena" last="Shumilina">Elena Shumilina</name>
</noCountry>
<country name="Norvège">
<region name="Trøndelag">
<name sortKey="Dobrovolska, Olena" sort="Dobrovolska, Olena" uniqKey="Dobrovolska O" first="Olena" last="Dobrovolska">Olena Dobrovolska</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000810 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000810 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23300818
   |texte=   Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23300818" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020